Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans
نویسندگان
چکیده
Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158)-Asp(171), termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.
منابع مشابه
Angiogenesis, Metastasis, and the Cellular Microenvironment Heparanase-Induced GEF-H1 Signaling Regulates the Cytoskeletal Dynamics of Brain Metastatic Breast Cancer Cells
Heparanase is the only mammalian endoglycosidase which has been widely implicated in cancer because of its capability to degrade heparan sulfate chains of heparan sulfate proteoglycans (HSPG). Specifically, the cell surface HSPG syndecan-1 and -4 (SDC1 and SDC4) aremodulators of growth factor action, and SDC4 is implicated in cell adhesion as a key member of focal adhesion complexes. We hypothe...
متن کاملHeparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells.
Heparanase is the only mammalian endoglycosidase which has been widely implicated in cancer because of its capability to degrade heparan sulfate chains of heparan sulfate proteoglycans (HSPG). Specifically, the cell surface HSPG syndecan-1 and -4 (SDC1 and SDC4) are modulators of growth factor action, and SDC4 is implicated in cell adhesion as a key member of focal adhesion complexes. We hypoth...
متن کاملHeparanase induces inflammatory cell recruitment in vivo by promoting adhesion to vascular endothelium.
Heparanase (HPSE1) is known to be involved in mechanisms of metastatic tumor cell migration. This enzyme selectively cleaves heparan sulfate proteoglycans (HSPG), which are ubiquitously expressed in mammals and are known to be involved in regulating the activity of an array of inflammatory mediators. In the present study, we have investigated the effects of human recombinant heparanase, the ina...
متن کاملHeparanase mediates cell adhesion independent of its enzymatic activity.
Heparanase is an endo-beta-D-glucuronidase that cleaves heparan sulfate and is implicated in diverse physiological and pathological processes. In this study we report on a novel direct involvement of heparanase in cell adhesion. We demonstrate that expression of heparanase in nonadherent lymphoma cells induces early stages of cell adhesion, provided that the enzyme is expressed on the cell surf...
متن کاملCell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin
Proteins with affinities for specific glycosaminoglycans (GAC's) were used as probes for testing the potential of cell surface GAG's to mediate cell adhesive responses to extracellular matrices (ECM). Plasma fibronectin (FN) and proteins that bind hyaluronate (cartilage proteo-glycan core and link proteins) or heparan sulfate (platelet factor 4 [PF4]) were adsorbed to inert substrata to evaluat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008